
NAG C Library Function Document

nag_zsptrf (f07qrc)

1 Purpose

nag_zsptrf (f07qrc) computes the Bunch–Kaufman factorization of a complex symmetric matrix, using
packed storage.

2 Specification

void nag_zsptrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex ap[],
Integer ipiv[], NagError *fail)

3 Description

nag_zsptrf (f07qrc) factorizes a complex symmetric matrix A, using the Bunch–Kaufman diagonal pivoting

method and packed storage. A is factorized as either A ¼ PUDUTPT if uplo ¼ Nag Upper, or

A ¼ PLDLTPT if uplo ¼ Nag Lower, where P is a permutation matrix, U (or L) is a unit upper (or
lower) triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal
blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and
column interchanges are performed to ensure numerical stability while preserving symmetry.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored and A is factorized as

PUDUTPT , where U is upper triangular;

if uplo ¼ Nag Lower, the lower triangular part of A is stored and A is factorized as

PLDLTPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

f07 – Linear Equations (LAPACK) f07qrc

[NP3645/7] f07qrc.1

4: ap½dim� – Complex Input/Output

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.
On entry: the n by n symmetric matrix A, packed by rows or columns. The storage of elements aij
depends on the order and uplo parameters as follows:

if order ¼ Nag ColMajor and uplo ¼ Nag Upper,
aij is stored in ap½ðj� 1Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag ColMajor and uplo ¼ Nag Lower,
aij is stored in ap½ð2n� jÞ � ðj� 1Þ=2þ i� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Upper,
aij is stored in ap½ð2n� iÞ � ði� 1Þ=2þ j� 1�, for i � j;

if order ¼ Nag RowMajor and uplo ¼ Nag Lower,
aij is stored in ap½ði� 1Þ � i=2þ j� 1�, for i � j.

On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by uplo.

5: ipiv½dim� – Integer Output

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On exit: details of the interchanges and the block structure of D.

More precisely, if ipiv½i� 1� ¼ k > 0, dii is a 1 by 1 pivot block and the ith row and column of A
were interchanged with the kth row and column.

If uplo ¼ Nag Upper and ipiv½i� 2� ¼ ipiv½i� 1� ¼ �l < 0,
di�1;i�1 di;i�1

di;i�1 dii

��
is a 2 by 2 pivot

block and the ði� 1Þth row and column of A were interchanged with the lth row and column.

If uplo ¼ Nag Lower and ipiv½i� 1� ¼ ipiv½i� ¼ �m < 0,
dii diþ1;i

diþ1;i diþ1;iþ1

��
is a 2 by 2 pivot

block and the ðiþ 1Þth row and column of A were interchanged with the mth row and column.

6: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f07qrc NAG C Library Manual

f07qrc.2 [NP3645/7]

7 Accuracy

If uplo ¼ Nag Upper, the computed factors U and D are the exact factors of a perturbed matrix Aþ E,
where

jEj � cðnÞ�P jU j jDj jUT jPT ;

cðnÞ is a modest linear function of n, and � is the machine precision.

If uplo ¼ Nag Lower, a similar statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L overwrite elements in the corresponding columns of A, but additional row interchanges
must be applied to recover U or L explicitly (this is seldom necessary). If ipiv½i� 1� ¼ i, for
i ¼ 1; 2; . . . ; n, then U or L are stored explicitly in packed form (except for their unit diagonal elements
which are equal to 1).

The total number of real floating-point operations is approximately 4
3
n3.

A call to this function may be followed by calls to the functions:

nag_zsptrs (f07qsc) to solve AX ¼ B;

nag_zspcon (f07quc) to estimate the condition number of A;

nag_zsptri (f07qwc) to compute the inverse of A.

The real analogue of this function is nag_dsptrf (f07pdc).

9 Example

To compute the Bunch–Kaufman factorization of the matrix A, where

A ¼

�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i

�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

1
CCA

0
BB@ ;

using packed storage.

9.1 Program Text

/* nag_zsptrf (f07qrc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;

f07 – Linear Equations (LAPACK) f07qrc

[NP3645/7] f07qrc.3

Nag_OrderType order;

/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07qrc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

!(ap = NAG_ALLOC(ap_len, Complex)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re, &A_UPPER(i,j).im);
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re, &A_LOWER(i,j).im);

}
Vscanf("%*[^\n] ");

}
/* Factorize A */
f07qrc(order, uplo_enum, n, ap, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07qrc.\n%s\n", fail.message);
exit_status = 1;
goto END;

f07qrc NAG C Library Manual

f07qrc.4 [NP3645/7]

}
/* Print details of factorization */

x04ddc(order, uplo_enum, Nag_NonUnitDiag, n, ap,
Nag_BracketForm, "%7.4f", "Factor", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04ddc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print pivot indices */
Vprintf("\nIPIV\n");
for (i = 1; i <= n; ++i)

Vprintf("%6ld%s", ipiv[i-1], i%7==0 ?"\n":" ");
Vprintf("\n");

END:
if (ipiv) NAG_FREE(ipiv);
if (ap) NAG_FREE(ap);
return exit_status;

}

9.2 Program Data

f07qrc Example Program Data
4 :Value of N
’U’ :Value of UPLO

(-0.39,-0.71) (5.14,-0.64) (-7.86,-2.96) (3.80, 0.92)
(8.86, 1.81) (-3.52, 0.58) (5.32,-1.59)

(-2.83,-0.03) (-1.54,-2.86)
(-0.56, 0.12) :End of matrix A

9.3 Program Results

f07qrc Example Program Results

Factor
1 2 3 4

1 (-0.3900,-0.7100) (-7.8600,-2.9600) (0.5279,-0.3715) (0.4426, 0.1936)
2 (-2.8300,-0.0300) (-0.6078, 0.2811) (-0.4823, 0.0150)
3 (4.4079, 5.3991) (-0.1071,-0.3157)
4 (-2.0954,-2.2011)

IPIV
-3 -3 3 4

f07 – Linear Equations (LAPACK) f07qrc

[NP3645/7] f07qrc.5 (last)

	f07qrc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

